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A new fast “W-algorithm” has been developed for solving two-dimensional elliptical 
partial differential equations. It employs point cylic reductions which reduce the number of 
equations by a factor of 4 at each step. In this tist part the constant-coefficient case with 
Dirichlet boundary conditions is considered. 

1. INTRODUCTION 

We shall consider in this paper the numerical solution of constant-coefficient elliptic 
boundary-value problems with Dirichlet boundary conditions on square domains. 
Without loss of generality we restrict attention to the equation 

(V2 + @KG v> = /a v>, (1.1) 

where u is a constant. Discretizing (l.l), using uniform finite differences, leads to a 
sparse linear system of equations of the form Mu = b, where M is N2 x N2 matrix 
with only a few nonvanishing diagonals. The sparsity of the matrix M has been 
exploited in various ways to produce a fast solution a = M-lb. These are known as 
“fast elliptical solvers.” The earliest methods used either the fast Fourier trans- 
forms as in Hackney [l] or global cyclic reductions [2]. These algorithms required 
U(N2 log, N) arithmetic operations to solve (1.1) on N x N mesh. Later these two 
algorithms were combined [3, 41 into an algorithm known as FACR(I) which requires 
only O(N2 log, log, N) arithmetic operations. Quite a different approach was used 
by Lorenz [5], who developed a marching algorithm, which although unstable gives 
very fast results. The operational count is (10 + (41og, N + 10)/D) N2, where D is 
the number of decimal digits lost in calculations. In certain computers with a very 
long word length, D may be allowed to be very large, thus resulting in the so-called 
“N2-algorithm.” An excellent review by Hackney of all fast elliptical solvers is 
available [6]. 

The aim of this paper is to present a point cyclic reduction method which is an 
“N2-algorithm.” In Sections 2 and 3, the basic idea of PCR is first presented and in 
Section 4, it is shown how it can be applied to Eq. (1.1). 
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It is shown that the number of operations needed may be as little as 9.5Na for 
N x N grid. 

2. POINT CYCLIC REDUCTION 

2.1. Statement of the Problem 

Let G(O) be a square grid: 

G(O) = {(xi , yj): xi = ih, yj = jh; i, j = 0, 1, 2 ,..., N = 2”}. 

Let there be three functions q3, p+, and px, defined on that grid, such that they satisfy 
the following two sets of finite-difference equations on every point P inside the 
boundary: 

4i-1.j + $b+l.i + AA-1 + &A+1 + u’+i.* = Pt 3 (2.la) 

A-l.i-1 + &+1.j-1 + d&1.,+1+ 4i+1.j+1+ U”4i.i = PC 3 (2.lb) 

where& E f(P) I f(xi , yi); a+ and UX are constants. The value of 4 on the boundary 
is zero. 

It should be stressed that functions pf, px and constants u+, ux are such that the 
solutions of either sets of Eqs. (2.la) or (2.lb) gives identical value for 4. 

In other words we have twice as many equations as unknowns; therefore instead of 
solving one of the sets of Eqs. (2.la) or (2.lb) one may choose some of the equations 
from set (2.la) and some from (2.Ib) and obtain the solution 4. That, in fact, is the 
basis of the PCR method. 

2.2. Notation 

Let G(l), Gt2) ,*a*, Gc”-l) be a series of subgrids of the grid G(O): 

Gcn) = {(xi , yj): xi = ih, yi = jh; i, j = 0, 2”, 2 * 2” ,..., 2”}. 

The last subgrid in this series, Gc”-l), consists of eight points on the boundary and one 
point in the center only. 

Let us now define two difference operators, S n+ and SnX, which will simplify the 
manipulation of Eqs. (2.1): 

S”+ = E,” + E,” + E;” f E,-“, 
(2.2) 

S”’ = (Exn f E,-“) - (E,” + E;“), 

where E, and EV are the shift operators in the x- and y-directions, respectively, 

EEnE,“f (x, Y) = f (x + nh, Y + mh>, 
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for any function f(x, u). These operators have a simple visual representation: S”+f(P) 
or Sfixf(P) is the sum over “+ star” or “ x star” of values off around point P 
removed by n grid points from P. 

The squares of these operators are again expressible in terms of the same operators: 

2.3. One Step Reduction 

With the aid of the S operators, the original Eqs. (2.1) may be written as 

ts+ + trt> $w> = P’(P), 

tsx + 7.4”) w> = P”(P). 

Multiplying them by S+ - u+ and Sx - ux, respectively, gives 

(S2f + u2+>+ = p+, 

(W + u”“)f$ = p, 
where 

and 

u2+ = 4 - 2s - (u+)2, 

9x = 4 - 2u- - (u")", 

P 2+ = (s+ - uf)pf -2p, 

P 2x = (SX - UX) px - 2p2+. 

(P+)z = LP+ + 2S"X + 4, 

(snxy = S2"X + 2s2n+ + 4. 
(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

It is seen that the structure of Eqs. (2.5) is identical to that of the original Eqs. (2.4), 
except that now they are on the coarser subgrid G(l), since the operators S2 instead 
of S act on 4. 

The R.H.S. of Eqs. (2.5), the reduced densities p”+(P) and p”“(P), are linear com- 
binations of ten values of p+ and px surrounding point P. 

The new parameters u2+ and u2X, Eqs. (2.6), are also constants and play the same 
role as U+ and ax in Eqs. (2.4). 

Hence the new Eq. (2.5) have the same structure and give the same results as Eqs. 
(2.4) but on the coarser grid G(l), which consists of about one-fourth the number of 
points of the G(O) grid. 

It is easy to see that this cyclic reduction can be repeated again leading to equations 
on the still coarser grid Gc2). Hence after performing PCR k times one gets the follow- 
ing equations: 

(s2a+ + u”“+) 4(P) = p”“+(P), (2.8a) 

(S@X + ZPX) 4(P) = p”““(P), (2.8b) 
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where P E Gtk), constants ZJ and functions p are defined recursively: 

&+ = 4 - 2u2k-1x _ (p+)2, 

u2*x = 4 _ su2’“+ _ @2*-1X)2, 
(2.9) 

and 

P 
2k+ = (s2k-‘+ _ u2”-‘+) p2*-“+ _ 2p2x-‘x , 

(2.10) 
p2kx = (szk-‘x _ u2*-1x) pzk-lx _ zp2’“f, 

for k = 1, 2 ,..., M - 1. 
Thus now we have a separate set of Eqs. (2.8) on each grid Gtz), for 1 = 0, 1, 2,..., 

M - 1, each giving the same solution, #(P). 
This completes the point cyclic reductions of Eqs. (2.1). 

3. THE SOLUTION 

3.1. The Central Point Solution 

It was noted earlier that the subgrid Gt”-l) consists of only one point C in the center 
and boundary points. It was also assumed that 4 is zero on the boundary, hence 

S2M--1+.x #(a = 0 (3.1) 

since this S operator sums the values of q5 on the boundary alone. 
With the aid of this result it is seen that either of Eqs. (23, for k = M - 1, gives 

the value 4(C) at the center of the grid. 
Therefore we may take a linear combination of these equations to give a solution: 

(3.2) 

where 01 is an arbitrary constant. 
The result 4(C) does not depend on the value of 01. 

3.2. Solution of the Reduced Equation 

Let us now turn our attention to the subgrid G(“-2) and Eqs. (2.8) on that grid 
(k = M - 2). It is seen that S2M-*X $(Px) (see Fig. 1 for definition of Px points) 
involves only values of 4(C) which is also known. Hence the solution for 4 at Px points 
on G(“-2) subgrid is 

where K = 2”-2. 

#PX) = c,““(P”) - FX~(PX))/U~X, (3.3) 
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FIG. 1. The positions of Px (marked x ), PC (marked +) points and the centre point C 
(marked 0) on the subgrid G““-“. 

Having done this the solution on the remaining P+ points on the G(“-2) subgrid 
can be obtained from Eq. (2.8a): 

$(P+) = (p"'(P') - sK+#P+))/UK+, (3.4) 

where, again, K = 2”-2. This is possible since SZMe2+d(P+) is a sum over known 
values of 4 at the boundary, Px points, or the central point C only, (see Fig. 1). 

This completes the calculation of 4 on the subgrid Gc”--l). 

5.K x + x + x 

L.K - + 0 + 0 + 

3.K- x + x + x 

0 + 0 + 

K 

I 

x + x + x 

I 

0 K 2.K 3.K f..K 5K 

FIG. 2. The positions of Px and P+ points on the G”’ subgrids; K = 2’. The values of 4 on 
the Gll+*) (marked 0) are known. 
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The next step is to calculate the solution 4 on the finer grid G(“-3): using Eq. (3.3) 
for K = 2”-3, the values of cj(PX) are calculated first and then using Eq. (3.4), 
#(P+) are found. 

This process is repeated for all subgrids (see Fig. 2 for arbitrary K) until all values 
of I$ are found on the original grid G(O). 

In the last step, with K = 2O = 1, the original unreduced Eqs. (2.4) are used to 
obtain the solution. 

3.2.1. Extension to the Rectangular Region 

Let the grid G(O) be rectangular: 

G(O) = {(xi = = = = = = , yi): xi ih, yj jh; i 0, 1, 2 ,..., N, 2MZ,j 0, 1,2 ,..., NV 2”y), 

where, say, N, > NV . 
The series of subgrids G(l),..., Gf”v-l) can be constructed in the same manner as 

for the N, = NW case, but now the last subgrid consists of boundary points and 2”m-Mu 
central points C1 = (2”v-1Zh, 2”*-1h). 

After performing k = M, - 1 PCR’s we get Eqs. (2.8) on the G(“g-l) subgrid. 
Taking a linear combination of (2.8a) and (2.8b) gives 

+tcz-1) + WC,) + &CZ,l) = p”(Cz), (3.5) 

where 

h = Ld+ + (1 - a) UKX, 

pA(Cz) = af+(Cz) + (1 - 4 P”“(Cz), 

K = 2”9-1 and 01 is an arbitrary constant. 
It is seen that Eq. (3.5) is a three-point one-dimensional linite-difference equation 

and can be solved by Gaussian elimination, cyclic reduction, or any number of other 
suitable methods. 

Once the solution at central points C1 is obtained, the rest of the reduced Eqs. (2.8) 
can be solved in the same manner as for the square grid. 

3.2.2. The Inhomogeneous Boundary Conditions 

If the boundary values of 4 are not zero, the L.H.S. of Eq. (3.1) is a nonvanishing 
constant, hence solution (3.2) should be modified in an obvious way. Similarly, the 
R.H.S. of Eq. (3.5) should be modified: the pK’s are replaced by PK - SK+. 

3.3. Operational Count 

In order to obtain the solution of Eqs. (2.4), first the series of reduced densities 
p2’+ and pzZx are calculated on subgrids G(I) and then solutions are found using 
Eq. (3.3) or (3.4). 
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It is seen from Eqs. (2.10) that one requires five additions and two multiplications 
in order to calculate the reduced density at one point. It is also noted that in order 
to calculate pnx reduced density, first the reduced p ?z+ density is required. On the other 
hand, it is seen from Fig. 2, that p nX reduced densities are required on every second 
point of a subgrid. Therefore, the number of points at which the p”+ and pnX reduced 
densities are calculated at each subgrid G12) is 

and 

m,+ = (p-2 - 1)” 

mzx = *(l + (2”-z - 1)2), 

respectively. Summing them over all the subgrids gives 

M-l 

zFl Cm+ + mzx> = HN2 - 6N + 4) + 2 log, N 5 W2. 

Since the calculation of each reduced density requires the same number of operations, 
the PCR is completed in 2.5N2 additions and Ne multiplications. 

The solution stage, as can be seen from Eqs. (3.3) and (3.4) requires four additions 
and one division for each point on the grid. 

To sum it up: in order to calculate a solution of Eqs. (2.1) on the square grid 
N x N, the PCR method requires 6.5 N2 additions and 2N2 multiplications/divisions. 

Therefore, PCR can be called an “N2-algorithm” with 8.5N2 floating point opera- 
tions. 

3.4. The Stability 

The above-described solution of Eqs. (2.1) is exact, but if calculated on a computer, 
the round-off error may accumulate. 

If we denote the round-off error in p’s at the kth level of PCR by 6p, the maximum 
error in p’s at the (k + I)st level may be estimated from Eq. (2.10): 

(3.6) 

where 

A(k) 4 + 1 u2”-‘+ I, -2 = w-8 - 2 1 &I+ I, 8 + 1 $-lx 1 I - 

Therefore the round-off error in p’s at the kth level is proportional to the product 

k-l 
e(k) z E A(Z). 

The solution, on the other hand, is proportional to u2’ at the kth level, see Eqs. (3.3) 
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and (3.4). Therefore the maximum error of (b is calculated at the kth level as 

or 
(l.Pk+)--y,~;)sp+ + Egspx) 

(3.7) 
(zPy(,~~)sp+ + E;;)spx) 

depending on whether the solution is calculated at P+ or Px points. 
In a special case, u+ = ux = -4, the round-off error can be calculated exactly, 

since from Eqs. (2.9) we see that z#+ = uzkX = -4 for any k. Therefore the matrix 
Atk) is independent of k and equals 

A = A’“’ = ‘3 -’ 

-16, 12 * 

On solving det I A - h1 I = 0 one gets the largest eigenvalue X = 16. Since the solu- 
tion in that case does not grow, the error is proportional to F-l = (&N2)*, or the 
square of the number of grid points. 

In order to establish the round-off error, in practice, the following procedure was 
adopted: uniformly random numbers were chosen for &‘s and then &s and &‘s 
were calculated from Eqs. (2.1). Using these p’s the solution I$& was obtained on the 
CDC 7600 computer with the aid of the PCR algorithm. Since &.‘s are random 
numbers, the difference 6+ii = & - $2 is due to round-off error alone. The results 
are shown in Table I. It may be estimated from the first column that X = 13.17 rather 
than 16 as calculated from error analysis. It is also seen that for u+ < -4, the error 
growth is very slow indeed. This is due to the rapid growth of z?* as a function of k: 
for u+ < -4, ~4~’ w -+(u’“>“. Since the error in Eqs. (3.7) is divided by uk, its growth 
must be inhibited. 

TABLE1 

The average round-off error E as a function of mesh size and constant u+.O 

Uf ZE -4 Uf = -4.1 II+ = -4.2 

Mesh size E D E D E D 

8x8 1.7 x lo-‘* 0 1.5 x 10-14 0 1.1 x 10-14 0 

16 x 16 1.4 x lo--= 1 5.0 x 10-14 1 4.6 x 10-l” 1 

32 x 32 1.8 x lo-‘* 2 1.5 x lo-la 1 8.8 x 10-I” 1 

64X64 2.5 x 10-11 4 2.5 x lo-= 2 1.1 x IO-18 1 

128 x 128 3.2 x lo-lo 5 3.6 x lo-” 2 1.3 x 10-I’ 1 

a In the second column the number of digits D lost in calculation is shown. 
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4. APPLICATIONS OF PCR TO ELLIPTICAL EQUATIONS 

In this section, we shall show how the above-described PCR method can be applied 
to the problem of numerical solutions of constant-coefficient elliptic boundary-value 
problems. 

We restrict our attention to the elliptical equation (1.1): 

on a rectangular domain with Dirichlet boundary conditions. 
There are several ways of discretizing Eq. (1.1) on a regular grid [l], the simplest 

two being the “five-point” formula and the “rotated five-point” formula. 
These formulas can be written symbolically as an approximation to the V2 operator: 

v2 z (l/hq(s+ - 4), (4.1) 

v2 g (l/h2)(P - 4)/(1 + is+>, (4.2) 

where the inverse of an operator means that the R.H.S. of an equation should be 
multiplied by it; h is the spacing of the grid. 

Unfortunately, although a formula similar to that of (4.1) exists for h, i h, , 
there is no equivalent to the “rotated five-point” formula. Therefore, this method is 
limited to discretization with identical spacing in x- and y-directions, h, = h, = h 
only. 

After some algebra, Eq. (1.1) can be discretised with the aid of (4.1) and (4.2) giving 

ts+ + u+>4 = p+, 
tsx + u”)$ = px, 

where 

uf = -4 + uh2, 

24x = -$(U+)2, 
(4.3) 

and 

p+ = h2p, 

px = gs+ - 24-q pf. 
(4.4) 

Therefore, we can now proceed to solve them using the PCR method, thus obtaining 
obtaining an approximate solution of Eq. (1.1). 

Let us now calculate the operational count of this procedure. First we note that 
px needs to be calculated on QN2 points of the grid, each calculation requiring six 
floating point operations. 
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Second, it is seen from Eqs. (2.7) and (4.4) that now 

P 2+=2x P, 

hence the first + cyclic reduction need not be calculated. For the same reason the 
first x cyclic reduction requires only five operations. 

The following table recapitulates the whole operational count of floating point 
calculations: 

PCR on all subgrids (2.10) 
Solution on all subgrids (3.3), (3.4) 
Calculation of px (4.4) 
Less calculations omitted at the first PCR 

3 5N2 
5N2 
3N2 
fN2 + #N2 

Total number of F.P.O.‘s 9.5N2 

This number does not include the data preparations (multiplication of p by h2) and 
calculation of uzh, the latter being O(log, N). 

Storuge requirements. A Fortran program incorporating the PCR method requires 
$N2 words of memory. At first an array Rii stores pt , pg and pf7 = 2~; at mesh 
points marked +, x , and 0 respectively on Fig. 2 (K = 1). In order to execute higher 
PCR’s an additional array of the length $N2 is needed to store p$ for i, j = 2,6, lo,... 
and i, j = 4, 8, 12 ,... 

During the solution stage, the array Rij is replaced by the solution & . 

Numerical results. A Fortran program incorporating the PCR method was written 
and tested on the CDC 7600 computer with FTN 4.6 compiler, OPT = 2. 

Typical results of accuracy of the solution and CPU times are shown in Table II. 
The function $ used in Eq. (1.1) was 4 = 0.5x(x - l)y( y - 1) + 0.5x2(x2 - l)y2(y2 - 1) 
with p(x, y) = Vz$ + ~4. A solution was obtained on a rectangle domain (0, 1) x 
(0, NV/N,), where NzI < N, = 2”1, with grid spacing h = l/N,. 

It is seen from Table 11 tha’t CPU time is indeed proportional to the number of 
grid points. The reason why the rectangular grids are calculated slightly faster than 
the square grids with the same number of points is because they have fewer points 
inside the boundary. 

4.1. Error Analysis 

It was shown in Section 3.5 how the round-off error affects a solution on the com- 
puter. Apart from the discretization error in (4.1) and (4.2), which is 0(h2), the solution 
is subjected to an error due to the d#erence in the two methods of discretization. 

It can be shown with the aid of Eqs. (2.4) that p+ and px should satisfy the following 
identity: 

(Si- + u’) px = (SX + u”) p+. (4.5) 
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TABLE II 

Relative errors in approximating the solution of Eq. (1.1) and CDC 7600 CPU times as a function 
of grid size and constant u 

Grid Maximum5 Average= CPU 
size error error time (set) 

8x8 
1.3 x 10-S 4.3 x 10-d 
9.6 x 1O-4 3.2 x 1O-4 

16 x 16 
1.3 x 10-a 2.5 x 10-d 
9.6 x 1O-4 2.0 x 10-a 

32 32 
1.1 x 10-s 2.1 x 10-4 

x 
9.1 x 10-d 1.5 x 10-a 

64 x 16 
9.8 x 1O-E 7.2 x lo-’ 
9.6 x 10-O 5.2 x 10-1 

64X64 
1.1 x 10-a 1.8 x 1O-4 
9.1 x 10-d 1.1 x 10-a 

256 
1.6 x lo-* 3.5 x 10-O 

x 16 
1.6 x lo-” 3.5 x 10-Q 

128 x 128 

1024 x 16 

9.6 x 1O-4 1.3 x 10-4 
8.8 x 10-d 9.8 x 1O-5 

1.6 x 10-l” 3.5 x 10-11 
1.6 x lo-l0 3.5 x 10-i’ 

0.00024 

0.00062 

0.0022 

0.0020 

0.0083 

0.0075 

0.033 

0.030 

5 Upper figures in each line refer to u = 0 and lower to u = -5. 

On the other hand, the approximations (4.4) do not, in general, satisfy (4.5). 
Therefore, the two discretization errors in (4.4), Sp,+ and 6pDX will grow in the same 
manner as round-off errors described in Section 3.5, and their analysis is not repreated 
here. This error is responsible for the lower accuracy for large N x N grids in Table II 
than can be expected from discretization error O(h2) = G(1/iV2) alone. 

In order to reduce this error, a more accurate approximation than (4.4) may be 
adopted, but this is outside the scope of this paper. 

An alternative approach is to perform k PCR’s; the resulting equations on the 
subgrid Gtk) can then be solved by some other stable fast method. Let us for example 
consider the global reduction method [2] with operational count 

6W log, N 
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or Hackney’s POT1 [l] method with operational count 

2.5N2(log, N + 2.4) 

for the N x N grid. 
If these methods are combined with PCR they will result in algorithms with opera- 

tional counts equal: 

N2 (9.5 + 6 log, N 6k 
- - 

8.5 4” 1 , 

N2 (9.5 2.5 log, N 2.5k 
- - 

+ 4” 1.5 ) 3 

respectively. 
Assuming N = 128, the following table of operational counts per grid point can be 

compiled 

k 

Op. count 

k PCR 
+ GCR 

k PCR 
+ POT1 

0 1 2 . . . 7 

43 16.4 10.8 a** 9.5 

23.5 12.9 10.2 *** 9.5 

The first column (k = 0) refers to the operational count of GCR or POT1 alone, 
whereas the last (k = 7) is for the PCR method on its own. But it can be seen that 
even if only one or two PCR’s are calculated first, the operational count is dramatically 
lower than for GCR or POT1 methods on their own. It is also worth pointing out 
that if we first perform, say, three PCR’s and then use an 0(N2 log, N) method, the 
resulting algorithm has roughly the same operational count 

N2 (9.5 + ~(h32 N - 3) - 8.5 
43 1 

~ 10N” 

regardless of the method used. 
If an O(N2 log, N) method is numerically stable, then the resulting algorithm 

should give more accurate results than the PCR method on its own since it was 
pointed out in Section 3.4 that the error grows with the number of PCR’s performed. 

As an example, Hackney’s POT1 program was combined with the PCR method 
to solve V2$ = p equation with the same 4 as used in preparing Table II. 

The results are shown in Table III. It is seen that performing two PCR’s results 
in the maximum error about an order of magnitude worse than the error in the exact 
Hackney’s solution, but an order of magnitude better than the PCR method alone. 

581/33/z-5 
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TABLE III 

Maximum errors in approximating the solution of Eq. (1.1) as a function of grid size and number 
of PCR’s performed before Hackney’s POT1 program is used. 

Grid 
size POT 1 

1 PCR 
+POTl 

2 PCR’s 
+POTl 

16 x 16 9.8 x 1O-5 8.0 x 1O-4 - 

32 x 32 2.5 x 10-G 1.9 x 10-4 4.4 x 10-d 

64 x 64 6.1 x 1O-B 4.6 x 1O-5 1.0 x 10-b 

128 x 128 1.5 x 10-s 1.1 x 10-S 2.4 x 1O-6 

The errors in Table III could be further reduced by using the “nine-point” formula in 
Hackney’s method, thus incorporating both pip and & to calculate the final 
solution. 
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